Complementary first and second derivative methods for ansatz optimization in variational Monte Carlo
نویسندگان
چکیده
منابع مشابه
Monte Carlo Methods in Fuzzy Optimization
Inevitably, reading is one of the requirements to be undergone. To improve the performance and quality, someone needs to have something new every day. It will suggest you to have more inspirations, then. However, the needs of inspirations will make you searching for some sources. Even from the other people experience, internet, and many books. Books and internet are the recommended media to hel...
متن کاملParallel Monte Carlo Methods for Derivative Security Pricing
Monte Carlo (MC) methods have proved to be flexible, robust and very useful techniques in computational finance. Several studies have investigated ways to achieve greater efficiency of such methods for serial computers. In this paper, we concentrate on the parallelization potentials of the MC methods. While MC is generally thought to be “embarrassingly parallel”, the results eventually depend o...
متن کاملAdaptive Multilevel Monte Carlo Methods for Stochastic Variational Inequalities
While multilevel Monte Carlo (MLMC) methods for the numerical approximation of partial differential equations with uncertain coefficients enjoy great popularity, combinations with spatial adaptivity seem to be rare. We present an adaptive MLMC finite element approach based on deterministic adaptive mesh refinement for the arising ”pathwise” problems and outline a convergence theory in terms of ...
متن کاملVariational Sequential Monte Carlo
Many recent advances in large scale probabilistic inference rely on variational methods. The success of variational approaches depends on (i) formulating a flexible parametric family of distributions, and (ii) optimizing the parameters to find the member of this family that most closely approximates the exact posterior. In this paper we present a new approximating family of distributions, the v...
متن کاملVariational Consensus Monte Carlo
Practitioners of Bayesian statistics have long depended on Markov chain Monte Carlo (MCMC) to obtain samples from intractable posterior distributions. Unfortunately, MCMC algorithms are typically serial, and do not scale to the large datasets typical of modern machine learning. The recently proposed consensus Monte Carlo algorithm removes this limitation by partitioning the data and drawing sam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Chemistry Chemical Physics
سال: 2019
ISSN: 1463-9076,1463-9084
DOI: 10.1039/c9cp02269d